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FUTURE WORK
● Purification method development to allow simultaneous measure-

ment of Cr(VI) and Cr(III) isotope ratios during reaction.

● Further experiments to investigate temperature, concentration, & 
matrix dependence of isotope fractionation. 

● Characterization of isotope effects during oxidation with synthetic 
manganite (γ-MnOOH).

CONCLUSIONS
● Structural differences between manganese oxides may contribute to 

variation in isotope ratios and kinetic behavior during oxidation 
processes. Temperature- and concentration-dependent reaction steps 
may contribute to observed differences in fractionation.

● Further experiments are required to identify the mechanistic 
source(s) of fractionation. Our results may be interpreted in light of 
published mechanisms of Cr oxidation by MnO2. 

● Isotopic fractionation during oxidation may need to be considered as 
a factor in the development of Cr stable isotopes as indicators of 
contaminant attenuation.

RESULTS & DISCUSSION (CONT.)
An alternative mechanism for Cr oxidation via a parallel reaction scheme 
[9] was proposed as follows:

Zink et al. [2] observed non-Rayleigh fractionation of approx. +0.2‰ in 
the Cr(VI) product of Cr(III) oxidation by aqueous hydrogen peroxide. 
These results were hypothesized to reflect the formation of metastable 
Cr(V) intermediates during a simultaneous reduction step. 

The negative values of δ53/52Cr in the Cr(VI) product obtained in our 
work may thus be attributed to differences in electron-transfer rates 
due to adsorption and coordination change processes at solid surfaces. 
We suggest that these processes involve temperature-dependent back-
reaction steps that contribute less to overall fractionation than the 
forward steps.

DISCUSSION

Cr(III)ads + MnO2 ⇌ Cr(IV)ads → minor products (1)
Cr(III) + MnO2 → Cr(V)ads → Cr(VI) (2)

Reaction sequences 1 & 2 compete for Cr(III), but only pathway 2 can 
produce the Cr(VI) product. Cr reacts increasingly faster by sequence 1 
than by sequence 2 as the reaction proceeds. By this mechanism, a back-
reaction of Cr(IV) to Cr(III) (sequence 1) and subsequent formation of 
Cr(VI) via sequence 2 could contribute to both equilibrium and kinetic 
effects.

RESULTS & DISCUSSION

These results show variation in isotope ratios of up to −0.5‰ in the 
Cr(VI) product. This is qualitatively consistent with a kinetic isotope 
effect, but the fractionation is much less than that during reduction [1]. 

Schauble et al. [6] predicted equilibrium isotope fractionations of up to 
+7‰ (Δ53/52CrCr(VI)-Cr(III)). Our results suggest that oxidation of Cr on 
birnessite cannot be solely equilibrium-controlled.

The positive δ53/52Cr during oxidation of Cr(III) on β-MnO2 may be 
explained by greater equilibrium effects from back-reaction of Cr(VI) to 
Cr(III). β-MnO2 sorbs more Cr over time than does δ-MnO2 [7]. This may 
result in greater equilibration time for rate-limiting electron transfer 
reactions on β-MnO2.

Isotope ratios in Cr(VI) during oxidation of Cr(III) on birnessite are shown 
in Figure 4. Greater overall fractionation is observed at 20 ºC than at 
4 ºC.
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Figure 4. Isotope fractionation during oxidation of (A) 10 and (B) 50 mg/L Cr(III).

Reaction kinetics of Cr(III) oxidation on birnessite are overall first-order. 
Reaction rate is highly dependent on MnO2 concentration (Figure 2), but 
nearly independent of Cr(III) concentration (Figure 3), consistent with 
literature [5]. The reaction is rapid but does not go to completion, 
suggesting inhibition of Cr oxidation by birnessite surface alteration.

Figure 2. Kinetics of the reaction of 
10.0 mg/L Cr(III) with varying concentrations 
of δ-MnO2 at 20 ºC. For comparison, the solid 
line represents published measurements of 
reaction of 40 mg/L Cr(III) with 100 mg/L 
δ-MnO2 in 1 mM nitrate. 

Figure 3. Kinetics of the reaction of 
Cr(III) (varying concentrations) with 
100 mg/L δ-MnO2 at 4 ºC.

Cr(III) + MnOx → Cr(IV)oct (1)
Cr(IV)oct ⇌ Cr(IV)oct,ads (2)

Cr(IV)oct → Cr(IV)tet (3)
Cr(IV)tet + MnOx → Cr(V)tet (4)
Cr(V)tet + MnOx → HCrO4

- (5)

Observed isotope fractionations will depend on the rate-limiting step 
and back-reactions in the mechanism. Silvester et al. [8] postulated the 
following mechanism of Cr(III) oxidation by Na-buserite:

According to this mechanism, step 1 is rate-limiting at low MnO2 
concentrations, while step 3 is rate-limiting at high MnO2 
concentrations. Our results do not enable identification of the rate-
limiting step. However, we expect that isotope fractionation would be 
primarily controlled by steps 1 & 3 and associated back-reactions.

METHODS
1. Synthetic birnessite was prepared by addition of HCl to KMnO4, 

washing with ultrapure water, and drying in air.

2. All reactions were performed in 0.1 M NaNO3 in 50 mL ultrapure 
water at pH ~3. The temperature of the reaction vessel was 
controlled at 4 or 20 ºC. Manganese oxide suspensions were kept in 
continuous motion and periodically extracted through a 0.45 μm 
membrane filter. Cr(VI) concentrations in filtrate were determined 
colorimetrically at 540 nm using diphenylcarbazide.

3. Filtrate samples were double-spiked with 54Cr & 50Cr,  purified via a 
two-step anion-exchange procedure, and analyzed via multicollector 
inductively-coupled plasma mass spectrometry (MC-ICP-MS) at the 
University of Illinois at Urbana-Champaign.

4. Isotope ratios of Cr(VI) in solution are reported as δ53/52Cr (relative to 
NIST SRM 979).

PREVIOUS WORK
Isotopic fractionation during Cr(III) oxidation by pyrolusite (β-MnO2) was 
measured previously [4]. Results from experiments conducted in nitrate 
matrix at pH 3 (Figure 1) show initial enrichment in 53Cr of up to +1.3‰ 
in the Cr(VI) product. Similar behavior was observed in chloride matrix 
and at pH 4.

Figure 1. Isotopic fractionation during 
Cr(III) oxidation on pyrolusite [4]. 
Cr(NO3)3 (10.0 mg/L in Cr) was reacted 
with synthetic β-MnO2 (100 mg/L) in 
0.1 M sodium nitrate at room tempera-
ture and controlled pH of 3.0. Data 
from replicate experiments are plotted.

Overall reaction kinetics were approximately first-order in Cr(III). 
Reaction was slow (1–3 days to completion) relative to reactions of 
Cr(III) with birnessite. 

INTRODUCTION
● Hexavalent chromium (Cr) is a highly mobile anthropogenic pollutant 

in ground and surface waters, and reduction of Cr(VI) to the less-
soluble Cr(III) is the most important natural process involved in 
attenuation. Progress has been made toward developing stable 
isotopes of Cr as indicators of attenuation.

● Previous studies have observed a preferential reduction of lighter Cr 
stable isotopes, attributed to a kinetically-controlled mechanism [1]. 
Isotope exchange between dissolved Cr(III) and Cr(VI) appears to be 
negligible over a period of days to weeks [2].

● Further development requires an understanding of isotopic 
fractionation during Cr oxidation by manganese oxides (the primary 
mechanism of environmental Cr(VI) formation). Previous studies on 
oxidation by pyrolusite (β-MnO2) have reported initial δ53/52Cr ratios 
of up to +1.1‰ in the Cr(VI) product, suggesting equilibrium isotope 
fractionation controlled by complex electron transfer mechanisms 
[3]. Laboratory investigations of fractionation during Cr(III) oxidation 
by birnessite (δ-MnO2) have been inconclusive, and oxidation 
mechanisms remain unclear.

● Here, we present the latest measurements of Cr stable isotope ratio 
changes during Cr(III) oxidation on birnessite.




